star twitter facebook envelope linkedin youtube alert-red alert home left-quote chevron hamburger minus plus search triangle x

định lý Leibnitz

Định lý cơ bản của giải tích chỉ rõ mối quan hệ giữa 2 vấn đề trung tâm của giải tích là đạo hàm và tích phân.

Nội dung của định lý gồm hai phần:

Phần thứ nhất

Cho f là một hàm số thực, liên tục trên một đoạn [ab]. Hàm F xác định với mọi x thuộc [ab] bởi công thức:

Khi đó, F liên tục trên đoạn [ab], khả vi trên khoảng mở(ab), và

với mọi x thuộc (ab).

Hệ quả

Định lý này thường được dùng để tính tích phân xác định của một hàm mà nguyên hàm của nó đã biết. Cụ thể, nếu ƒ là một hàm thực, liên tục trên [ab], và g là nguyên hàm của ƒ trên [ab], thì

.

Hệ quả đã giả thiết tính liên tục của ƒ trên toàn bộ đoạn [ab]. Phần thứ hai của định lý phát biểu kết quả mạnh hơn hệ quả này.

Phần thứ hai

Phần này thường được gọi là định lý Newton-Leibniz.

Cho f là một hàm số thực xác định trên đoạn [ab] và tìm được nguyên hàm g của nó trên [ab], nói cách khác, ƒ và g là các hàm số sao cho với mọi x thuộc [ab],

 

Nếu f khả tích trên [ab] thì

Phần thứ hai mạnh hơn hệ quả đã nêu là vì nó không cần giả thiết ƒ là hàm liên tục.

Từ phần thứ nhất của định lý, ta nhận thấy nguyên hàm của ƒ luôn tồn tại khi ƒ liên tục, mặc dù trong nhiều trường hợp, nguyên hàm đó không biểu diễn được thông qua các hàm số sơ cấp quen thuộc.

A - Z Sitemap

Đào tạo, nghiên cứu gắn liền với khoa học và công nghệ nhằm tạo ra những sinh viên và học viên có lòng yêu nước, có phẩm chất nhân văn mang đậm bản sắc Việt Nam, có ý thức sinh hoạt cộng đồng, có sức khỏe, có năng lực và kỹ năng toàn diện, tự tin, năng động, sáng tạo và trở thành công dân khởi nghiệp mang tính toàn cầu.