star twitter facebook envelope linkedin youtube alert-red alert home left-quote chevron hamburger minus plus search triangle x

SỰ HỘI TỤ CỦA CÁC BIẾN NGẪU NHIÊN

 

Trong lý thuyết xác suất, có nhiều khái niệm khác nhau về sự hội tụ của các biến ngẫu nhiên. Sự hội tụ (hiểu theo nghĩa được trình bày dưới đây) của các dãy biến ngẫu nhiên về một biến ngẫu nhiên giới hạn nào đó là một khái niệm quan trọng trong lý thuyết xác suất, và trong các ứng dụng của thống kê và của quá trình ngẫu nhiên. Ví dụ, nếu trung bình của n biến ngẫu nhiên Yii = 1,..., n độc lập và phân phối đồng đều, được cho bởi:

                                                       

Thì khi n tiến tới vô cùng, Xn sẽ hội tụ theo nghĩa xác suất (xem dưới đây) về một trung bình chung, μ của các biến ngẫu nhiên Yi. Kết quả này được biết như là luật số lớn (yếu). Có nhiều dạng hội tụ khác đóng vai trò quan trọng trong các định lý, trong đó có định lý giới hạn trung tâm.

Tiếp sau đây, chúng ta giả sử rằng (Xn) là một dãy biến ngẫu nhiên, và X là một biến ngẫu nhiên, tất cả đều được định nghĩa trên cùng một không gian xác suất (Ω, F, P).

HỘI TỤ THEO PHÂN PHỐI

Giả sử F1F2,... là một dãy các hàm phân phối tích lũy ứng với các biến ngẫu nhiên X1X2,..., và F là hàm phân phối ứng với biến ngẫu nhiên X. Ta nói rằng dãy Xn hội tụ về X theo phân phối, nếu

với mọi số thực a mà tại đó F liên tục. Vì F(a) = Pr(X ≤ a), nên điều này có nghĩa là xác suất để giá trị của X nằm trong một giới hạn định sẵn gần như là bằng với xác suất để Xn cũng nằm trong giới hạn này, với n được cho đủ lớn. Sự hội tụ theo phân phối thường được ký hiệu bằng việc thêm ký tự  phía trên mũi tên chỉ sự hội tụ:

Hội tụ theo phân phối là dạng hội tụ yếu nhất, và thường được gọi là hội tụ yếu. Một cách tổng quát thì nó không suy ra các dạng hội tụ khác. Tuy nhiên, hội tụ theo phân phối được suy ra từ tất cả các dạng hội tụ khác được đề cập trong bài viết này, và do đó, nó là dạng hội tụ chung nhất và có ích nhất của các biến ngẫu nhiên. Đây cũng là khái niệm hội tụ được dùng trong định lý giới hạn trung tâm và trong luật số lớn (yếu).

Một kết quả đáng lưu ý, được sử dụng kết hợp với luật số lớn và định lý giới hạn trung tâm, đó là nếu một hàm  gR → R  là liên tục, và nếu  Xn  hội tụ theo phân phối về  X, thì  g(Xn)  cũng hội tụ theo phân phối về  g(X). (chứng minh bằng cách dùng định lý biểu diễn Skorokhod).

HỘI TỤ THEO XÁC SUẤT

Dãy Xn hội tụ về X theo xác suất nếu

với mọi ε > 0. Hội tụ theo xác suất thật ra là sự hội tụ của xác suất.

Hội tụ theo xác suất được ký hiệu bằng cách thêm chữ 'P' vào phía trên mũi tên chỉ sự hội tụ over:

Hội tụ theo xác suất cũng là khái niệm hội tụ đề cập trong luật số lớn (yếu). 

HỘI TỤ HẦU CHẮC CHẮN

 

Ta nói rằng dãy Xn hội tụ hầu như chắc chắn hay hầu khắp nơi hay với xác suất 1 hay mạnh về X nếu:

                              

Có nghĩa là bạn được đảm bảo rằng các giá trị của Xn xấp xỉ giá trị của X, theo nghĩa (xem hầu như chắc chắn) là xác suất để Xn không hội tụ về X là bằng 0. Bằng cách dùng không gian xác suất (Ω, F, P) và khái niệm biến ngẫu nhiên như là một hàm số từ Ω đến R, điều này tương đương với cách viết

Hội tụ hầu như chắc chắn thì suy ra hội tụ theo xác suất, và do đó cũng suy ra hội tụ theo phân phối. Nó là khái niệm hội tụ được đề cập trong luật số lớn (mạnh).

A - Z Sitemap

Đào tạo, nghiên cứu gắn liền với khoa học và công nghệ nhằm tạo ra những sinh viên và học viên có lòng yêu nước, có phẩm chất nhân văn mang đậm bản sắc Việt Nam, có ý thức sinh hoạt cộng đồng, có sức khỏe, có năng lực và kỹ năng toàn diện, tự tin, năng động, sáng tạo và trở thành công dân khởi nghiệp mang tính toàn cầu.