Tích phân suy rộng
Trong giải tích, tích phân suy rộng là giới hạn của một tích phân xác định như một điểm đầu nút của (các) khoảng lấy tích phân tiệm cận hoặc số thực xác định hoặc ∞ hoặc −∞ hoặc trong một số trường hợp, cả hai điểm đầu nút đều đạt đến các giới hạn. Một tích phân như vậy thường được viết tượng trưng giống như một tích phân xác định tiêu chuẩn, với vô cực như là một giới hạn của tích phân.
Cụ thể, một tích phân suy rộng là giới hạn có dạng
- ,
hoặc của dạng
- ,
trong đó tích phân nhận một giới hạn của một hay điểm đầu nút khác (hoặc đôi khi cả hai) (Apostol 1967, §10.23). Khi hàm không xác định tại nhiều điểm hữu hạn trong khoảng, tích phân suy rộng trên khoảng được định nghĩa là tổng các tích phân suy rộng trên các khoảng giữa những điểm này.
Bằng cách lạm dụng ký hiệu, tích phân suy rộng thường được viết tượng trưng như tích phân xác định tiêu chuẩn, nhưng với vô cực là một trong các giới hạn của tích phân. Khi tích phân xác định tồn tại (theo nghĩa của hoặc tích phân Riemann hoặc tích phân Lebesgue cao cấp hơn), sự nhập nhằng này được giải quyết do cả tích phân thường và tích phân suy rộng có giá trị như nhau.
Thường thì người ta có thể tính giá trị của tích phân suy rộng, ngay cả khi hàm không khả tích theo nghĩa thông thường (ví dụ như tích phân Riemann) do một điểm kỳ dị trong hàm hoặc không xác định tại vô cực. Các tích phân như vậy thường được gọi là "suy rộng thực", vì chúng không thể tính như một tích phân thường.
trường
Bài viết liên quan
- Trà Vỏ Quýt: Công Dụng và Cách Làm
- Water and Wastewater Engineering: Design Principles and Practice
- CÁC NGUYÊN TẮC SƯ PHẠM VÀ PHƯƠNG PHÁP DẠY HỌC CHỦ YẾU ĐƯỢC SỬ DỤNG TRONG GIẢNG DẠY CHẤT HỮU CƠ - PHẦN: CƠ CHẾ PHẢN ỨNG HỮU CƠ (Tiếp theo phần trước)
- Relative Entropy: Khái niệm và Ứng dụng
- Ăn uống lành mạnh để bảo vệ sức khỏe ngày Tết