Nguyên lý xác suất nhỏ và xác suất lớn trong xác suất thống kê
Nguyên lý xác suất nhỏ và xác suất lớn
Như ta đã biết, xác suất nghĩa là khả năng để một biến cố nào đó xảy ra trong khi thực hiện phép thử. Trong nhiều bài toán thực tế, ta thường gặp các biến cố có xác suất rất nhỏ, gần bằng 0. Qua nhiều lần quan sát, người ta thấy rằng: các biến cố có xác suất nhỏ gần như không xảy ra khi thực hiện phép thử. Trên cơ sở đó có thể đưa ra “Nguyên lý không thực tế không thể có của các biến cố có xác suất nhỏ” sau đây: Nếu một biến cố có xác suất rất nhỏ thì thực tế có thể cho rằng trong một phép thử, biến cố đó sẽ không xảy ra.
Việc quy định một mức xác suất được coi là “rất nhỏ” tuỳ thuộc vào từng bài toán cụ thể. Chẳng hạn: Nếu xác suất để một loại dù không mở khi nhảy dù là 0,01 thì mức xác suất này chưa thể coi là nhỏ và ta không nên sử dụng loại dù đó. Song nếu xác suất để một chuyến tàu đến ga chậm 10 phút là 0,01 thì ta có thể coi mức xác suất đó là nhỏ, tức là có thể cho rằng xe lửa đến ga đúng giờ.
Một mức xác suất nhỏ mà với nó ta có thể cho rằng: biến cố đang xét không xảy ra trong một phép thử được gọi là mức ý nghĩa. Tuỳ theo từng bài toán cụ thể, mức ý nghĩa thường được lấy trong khoảng từ 0,01 đến 0,05. Nguyên lý xác suất nhỏ là cơ sở của phương pháp kiểm định
Tương tự như vậy ta có thể nêu ra “Nguyên lý thực tế chắc chắn xảy ra của các biến cố có xác suất lớn” như sau: Nếu một biến cố có xác suất gần bằng 1 thì thực tế có thể cho rằng biến cố đó sẽ xảy ra trong một phép thử. Cũng như trên, việc quy định mức xác suất được coi là lớn hay nhỏ tuỳ thuộc vào bài toán cụ thể. Thông thường người ta lấy trong khoảng từ 0,95 đến 0,99. Và người ta gọi nó là độ tin cậy và nguyên lý xác suất lớn là cơ sở của phương pháp ước lượng khoảng tin cậy.